On Scalarization of Vector Optimization Type Problems
نویسنده
چکیده
We consider scalarization issues for vector problems in the case where the preference relation is represented by a rather arbitrary set. An algorithm for weights choice for a priori unknown preference relations is suggested. Some examples of applications to vector optimization, game equilibrium, and variational inequalities are described. DOI: 10.3103/S1066369X12090022
منابع مشابه
Duality for vector optimization problems via a general scalarization
Considering a vector optimization problem to which properly efficient solutions are defined by using convex cone-monotone scalarization functions, we attach to it, by means of perturbation theory, new vector duals. When the primal problem, the scalarization function and the perturbation function are particularized, different dual vector problems are obtained, some of them already known in the l...
متن کاملWell-posedness and scalarization in vector optimization
In this paper we study several existing notions of well-posedness for vector optimization problems. We distinguish them into two classes and we establish the hierarchical structure of their relationships. Moreover, we relate vector well-posedness and well-posedness of an appropriate scalarization. This approach allows us to show that, under some compactness assumption, quasiconvex problems are ...
متن کاملUsing the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients
Scalarization of the multiobjective programming problems with fuzzy coefficients using the embedding theorem and the concept of convex cone (ordering cone) is proposed in this paper. Since the set of all fuzzy numbers can be embedded into a normed space, this motivation naturally inspires us to invoke the scalarization techniques in vector optimization problems to evaluate the multiobjective pr...
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملRestricting the parameter set of the Pascoletti-Serafini scalarization
A common approach to determine efficient solutions of a multiple objective optimization problem is reformulating it to a parameter dependent scalar optimization problem. This reformulation is called scalarization approach. Here, a well-known scalarization approach named Pascoletti-Serafini scalarization is considered. First, some difficulties of this scalarization are discussed and then ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012